ОТЧЁТ

По лабораторным работам по курсу «Лаборатория экспериментальных методов физики» 5 семестра

Выполнили студенты 324 группы Ёч Станислав, Бондарь Михаил, Кондратьев Артём, Денисов Владислав, Фещенко Илья

Руководитель Ю.А. Хохлов МФТИ, 2015 г.

ОГЛАВЛЕНИЕ.

3 стр.	Краткая теория
3 стр.	Соединение приборов
3 стр.	Распределение Пуассона
3 стр.	Космическое излучение
4 стр.	Сцинтилляционный счётчик и ФЭУ
5 стр.	Кремниевый фотодиод
6 стр.	Система «Сумма»
6 стр.	Формула Бете-Блоха для ионизационных потерь
8 стр.	Распределение Ландау
10 стр.	Сбор и обработка данных
11 стр.	Опыт 1
13 стр.	Опыт 2

Краткая теория.

Соединение приборов.

В достаточно длинной линии нарушается условие квазистационарности, т.е. на разных участках линии напряжения и токи оказываются различными. Распределение напряжений и токов в длинной линии описывается системой телеграфных уравнений:

$$\frac{\partial V}{\partial t} = -\frac{1}{C_h} \frac{\partial I}{\partial x}$$
$$\frac{\partial V}{\partial x} = -\frac{L_h}{c^2} \frac{\partial I}{\partial t}$$

Для соединения приборов часто используются коаксиальные кабели, которые создают так называемую систему Лехера. Каждый кабель характеризуется своим параметром — волновым сопротивлением (показывает зависимость напряжения между линиями от тока)

$$Z_0 = \sqrt{\frac{L}{C}}$$

Удельная емкость и индуктивность коаксиального кабеля можно представить следующим образом:

$$C_h = \frac{2\pi\varepsilon_0\varepsilon}{\ln(D/d)}, \qquad L_h = \frac{\mu_0\mu}{2\pi}\ln(D/d),$$

Где D, d — внешний и внутренний радиусы кабеля соответственно. Тогда волновое сопротивление будет равно:

$$Z = \sqrt{\frac{L_h}{C_h}} = \frac{1}{2\pi} \sqrt{\frac{\mu\mu_0}{\varepsilon\varepsilon_0}} \ln \frac{D}{d} \approx \frac{\lg(D/d)}{\sqrt{\varepsilon}} \cdot 138 \ \Omega$$

Для того, чтобы передача сигнала была возможной, необходимо устранить отражение электромагнитных волн на конце кабеля. Коэффициент отражения в длинной линии равен

$$\rho = \frac{Z_H - Z}{Z_H + Z}$$
, где Z_H – сопротивление нагрузки. Именно поэтому необходимо

согласовывать линии, т.е. устанавливать сопротивление нагрузки, равное волновому сопротивлению кабеля. В нашем случае для согласования мы берём сопротивление R=50 Ом (стандартное значение для физических приборов).

Распределение Пуассона.

Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой

фиксированной средней интенсивностью и независимо
$$p(k) \equiv \mathbb{P}(Y=k) = \frac{\lambda^k}{k!} e^{-\lambda^2}$$
 Мат. ожидание и дисперсия распределения

равны параметру распределения (лямбда).

Космическое излучение.

Основную часть заряженных частиц космических лучей на уровне моря составляют мюоны (относятся к лептонам, масса 105,7 МэВ, заряд -1, спин ½, время жизни 2,2*10⁻⁶ с). Большинство мюонов рождается в верхних слоях атмосферы и теряют около 2 ГэВ по пути к поверхности Земли. Средняя энергия мюонов на уровне моря составляет около 4 ГэВ. Среднее распределение мюонов по углам ~cos²θ. Средняя интенсивность мюонов на уровне моря I~1 см⁻²мин⁻¹.

Сцинтилляционный счётчик и ФЭУ.

Излучение, попадая в вещество, производит в нём ионизацию. При этом в ряде веществ образуется свечение в оптическом диапазоне, называемое сцинтилляцией. Излученный свет собирается – в спектральном диапазоне прозрачности сцинтиллятора – на фотоприёмник, в качестве которого служит фотоэлектронный умножитель (ФЭУ).

В основе испускания электронов веществом под действием света лежит внешний фотоэффект, суть которого состоит в возможности возбуждения электрона до его выхода из вещества путём передачи ему всей энергии поглощенного фотона. В рассматриваемом случае ФЭУ эмиссия происходит из твердого фотокатода в вакуум. Вероятность выбивания электрона называется квантовой чувствительностью, или эффективностью, фотокатода. Она зависит от энергии фотона, свойств вещества, состояния его поверхности и ряда других факторов. Ток электронов, эмитированных катодом, усиливается т.н. динодной системой ФЭУ – рядом электродов, находящихся под последовательно возрастающими потенциалами. В основе процесса усиления лежит эффект вторичной электронной эмиссии – выбивания из вещества (вторичных) электронов в результате «бомбардировки» его поверхности достаточно энергичными (первичными) электронами. Эффект характеризуется коэффициентом вторичной эмиссии (КВЭ) - отношением тока вторичных электронов к току первичных. Усиление в системе из п каскадов усиления

(динодов) М = $\prod_{i=1}^{n} \delta_{i}$, где δ_{i} – (средний) коэффициент вторичной эмиссии i-го динода.

В достаточно узком диапазоне напряжений (энергий) в рабочей области КВЭ динодов может быть грубо аппроксимирован линейной функцией $\delta(V) \approx cV$. Для подачи на

электроды ФЭУ напряжения обычно используется резистивный делитель напряжения. При равномерном распределении потенциалов напряжение между последовательными динодами $V = V_0/n$, где V_0 – полное напряжение на динодной системе ФЭУ. Тогда в предположении эквивалентности всех каскадов полное усиление $M = c(V_0/n)^n \propto V_0^n$, т.е. относительное изменение коэффициента усиления ФЭУ при изменении напряжения на нём $dM/M = n dV_0/V_0$.

На практике разность потенциалов между последовательными динодами ФЭУ составляет V ~100-200 В. При типичных для современных ФЭУ КВЭ, равном 4, и числе каскадов 12 коэффициент усиления составляет М≈10⁷.

Коэффициент шума ФЭУ *В* варьируется от десятых долей для "хороших" типов и образцов ФЭУ до нескольких единиц. Он может быть измерен из амплитудного распределения одноэлектронных импульсов (р.о.и., или одноэлектронного спектра), т.е. анодных сигналов, вызываемых вылетом из катода одного электрона:

 $B = \frac{\sigma_1^2}{\mu_1^2}$, где μ_1 и σ_1^2 - соответственно среднее значение и абсолютная дисперсия

р.о.и.

Для получения р.о.и. часто используется метод слабых световых вспышек. Фотокатод освещается короткими вспышками от импульсного источника света (например, СИД). Интенсивность вспышек уменьшают так, что среднее число фотоэлектронов $\mu \ll 1$. Об этом можно судить, оценивая по осциллографу интенсивность «нулевой» линии развертки в канале измерения анодного сигнала. Она должна составлять большую долю (>0.9) от всех запусков развёртки осциллографа, синхронизованных со вспышкой. При этом, исходя из пуассоновской статистики, вероятность «нулевого» сигнала $P(0) = e^{-\Box} \Box$ $1-\Box$ близка к единице, а подавляющая часть остального спектра - одноэлектронные импульсы: $P(1) = \Box e^{-\Box} \Box \Box 1 - P(0)$. Если так же синхронизовать измерение амплитуды (или заряда) токового импульса ФЭУ, для чего обычно используется аналогоцифровой преобразователь (АЦП), то полученное распределение и есть р.о.и.

Кремниевый фотодиод (SiPM).

В одном из опытов используется кремниевый фотоумножитель (Silicon PhotoMultiplier). Это устройство представляет собой матрицу из лавинных фотодиодов. Его преимущества перед ФЭУ — низкое рабочее напряжение, высокое временное и амплитудное разрешение, низкая чувствительность к магнитным полям. Недостатки — высокий уровень шума, зависимость коэффициента усиления от температуры и необходимость последующего усиления сигнала.

Система «СУММА»

В опытах используется система сбора данных «Сумма». Система состоит из стоек для размещения каркасов, которые служат для размещения функциональных блоков. В данном случае используется однокаркасный вариант.

Описание основных функциональных блоков:

1) Контроллер питания — для подачи питания.

2) Формирователи сигнала - выдают логический сигнал заданной длительности при подачи на них напряжения выше регулируемого порога.

3) Задержки.

4) Блок логики. Реализуется функция ИЛИ от четырех входов. Имеются как прямые, так и инвертированные выходы.

5) Счётчик логических сигналов.

Логические сигналы используют стандарт NIM.

Приведем для справки стандарты логических сигналов:

TTL(транзистор-транзисторная логика): диапазон нуля: [0, 0.7] В, диапазон 1 - [2.4, 5.0] В.

ECL (эмиттерно-соединенная логика): [0, -0.7] B, [-2.4, -5.0] B (наиболее распространенная реализация использует отр. напряжение).

LVDS (дифференциальная связь) — медная витая пара, сопротивление 100 Ом. Сигнал формируется выставлением 0.35 В (=3.5 мВ) на один из контактов, в зависимости от того, 0 или 1 передается.

NIM- коаксиальный кабель сопротивлением 50 Ом , логическая 1 соответствует -16мА=-0.8В.

Формула Бете-Блоха ионизационных потерь.

Большинство детекторов частиц, включая сцинтилляционные счётчики, основано на регистрации ионизационных потерь в веществе детектора. Ионизационное торможение - главный механизм потерь энергии при прохождении заряженной частицы через вещество. Движущаяся через вещество частица испытывает кулоновское взаимодействие с электронами и передаёт часть энергии на их возбуждение и ионизацию.

Т.н. плотность ионизационных потерь, т.е. потери энергии dE на единицу пройденной в среде «толщины» $dx = \rho^* dl$, где ρ - плотность вещества, a dl имеет размерность длины, определяется формулой Бете-Блоха:

$$\frac{dE}{dx} = \frac{4\pi N_A Z z^2 e^4}{m_e c^2 \beta^2 A} \left[\ln \frac{2m_e c^2 \beta^2}{I(1-\beta^2)} - \beta^2 \right]$$

Здесь N_A – число Авогадро, Z и A –и атомный номер и массовое число вещества, I – его средний потенциал ионизации, z – заряд (в единицах е) ионизирующей частицы, β - её скорость (в единицах скорости света с), е и m_e – заряд и масса электрона.

Основные закономерности, вытекающие из формулы Бете-Блоха:

 Потери не зависят от массы, квадратично зависят от заряда частицы и являются функцией её скорости:

$$\frac{dE}{dx} = z^2 f(\beta)$$

- 2. Эта универсальная для всех частиц функция в области малых скоростей β<<1 (но больших по сравнению с «внутриатомными скоростями» электронов) изменяется как 1/β², т.е. по мере замедления нерелятивистской частицы её торможение резко усиливается. С ростом β функция достигает (при γ ~ 3÷4) минимума. Поэтому умеренно релятивистскую частицу иногда называют «минимально ионизирующей». При дальнейшем росте β потери медленно (~ln γ) растут.
- 3. Зависимость dE/dx от свойств среды главным образом определяется отношением Z/A, близким к 1/2 для большинства веществ. В этом состоит практичность выражения плотности потерь в единицах «толщины», а не длины. Влияние среднего потенциала ионизации I, стоящего «под логарифмом», мало. Для однозарядной минимально ионизирующей частицы потери составляют от 1 до 2 МэВ*см²/г.

Рис. 1. На рисунке представлен характерный вид зависимости плотности ионизационных потерь частицы от её скорости. Видно, что в масштабе рисунка на участке графика левее минимума (γ~5-500) можно считать, что плотность потерь энергии линейно растёт с ростом γ.

Распределение Ландау.

Формула Бете-Блоха даёт лишь средние потери заряженных частиц за счёт ионизации. Для тонких поглотителей имеются сильные флуктуации вокруг средних потерь энергии. Распределение потерь сильно ассиметрично. Оно может быть параметризовано распределением Ландау:

$$\Delta E_{eep} = \xi \cdot \left(\ln \frac{2m_e c^2 \beta^2 \xi}{I^2} + 0,373 \right), \quad \xi = \frac{2\pi e^4}{m_e} \cdot \frac{z^2}{V^2} \cdot n_e \cdot \Delta x,$$

Полученное распределение называется кривой Ландау и имеет вид, схематически изображенный на рисунке. Распределение Ландау для "тонких " поглотителей ($\Delta E = \Delta E_{sep}$) существенно несимметрично: положение максимума кривой ($\Delta E = \Delta E_{sep}$) не совпадает со средними потерями энергии: $\Delta E_{cped} = 1.4 \cdot \Delta E_{sep}$.

Ширина распределения на половине высоты близка к 4х. Асимметрия обусловлена сравнительно редкими близкими столкновениями, в которых образовавшимся

Рис. Пример распределения Ландау.

 δ –электронам передается значительная доля энергии частицы, следовательно, при этом наблюдаются большие потери энергии.

Сбор и обработка данных на компьютере.

Сбор данных: программа daqTectronix в директории ~/sipm/sources/acquisition.

2 ключа – файл с настройками и папка с результатами измерения: –opt example.opt –out folder/

Пример использования ./daqTectronix -opt options/daqOverVoltage.opt -out sample/

Анализ (построение гистограмм): программа gain в директории ~/sipm/sources/analysis

3 ключа – файл с настройками, файл с исходными данными и папка с результатами измерения: –орt example.opt data-27*.root –out folder/output.root

Пример использования ./gain -opt options/IntrgrateAndPeakSearch.opt ~/sipm/sources/acquisition/daq/data-27.root -out ~/sipm/sources/acquisition/daq2/rate-27.root

Просмотр данных: командой root в терминале запускается непосредственно пакет обработки root.

Команда в руте TBrowser В – браузер для просмотра данных типа *.root

Далее открываются искомые гистограммы и осциллограммы, для осциллограмм в настройках надо выставить alp для того, чтобы показывались оси.

Измерения.

<u>Опыт 1.</u>

Задача: измерение одноэлектронного спектра (р.о.и.).

Описание опыта.

Для измерения одноэлектронного спектра используется метод слабых световых вспышек. Фотокатод освещается короткими вспышками от импульсного источника света (светодиода) малой интенсивности так, что среднее число фотоэлектронов μ <<1. Тогда «нулевая» линия развертки в канале измерения анодного сигнала составляет большую долю (>0.9) от всех запусков развёртки осциллографа, синхронизованных со вспышкой. В этом случае практически все наблюдаемые импульсы, в соответствии с распределением Пуассона, будут одноэлектронными. Все получаемые импульсы обрабатываются компьютером для построения спектра.

Рис. 3. Схема установки.

Описание установки.

Внутри полого металлического цилиндра, не пропускающего внешний свет, расположены светодиод и фотодиод друг напротив друга. Светодиод (СВ) поджигается прямоугольными импульсами с генератора частотой следования 10 кГц, длительностью 100 нс и амплитудой -3,5 – -4 В. Фотоны, испускаемые светодиодом, улавливаются фотодиодом (ФТ) (подключается так, что его ключ К расположен со стороны зазубрины). Сигнал с фотодиода подаётся на усилитель, на который также подаётся постоянное

питающее напряжение -10 В от источника постоянного напряжения и напряжение смещения (-26,5 В). Сигнал с усилителя подаётся на вход осциллографа, запуск развёртки которого происходит по сигналу с генератора.

Рис. 4. Из-за необходимости согласования линий, для поджига светодиода используется следующая схема:

Т.к. сопротивление большое, то необходимо подавать большое напряжение смещения.

Результаты.

Одноэлектронные импульсы были наблюдены на осциллографе. Было замечено, что при амплитуде импульсов генератора меньше ~3,2 В импульсов нет вообще, затем их процент (процент осциллограмм, на которых есть какой-то импульс) возрастает до 100% при напряжении ~3,8 В (в данном случае, в соответствии с распределением Пуассона, большая часть импульсов уже не одноэлектронные). Также было замечено, что распределение числа фотоэлектронов является пуассоновским.

Рис. 5. Спектр сигналов с усилителя по амплитуде. Видно, что распределение является пуассоновским, и каждый пик соответствует какому-то «числу электронов» в импульсе (одно-, двух- и т.д. электронные импульсы). При этом пики являются не очень узкими, с увеличением номера пика его ширина увеличивается, и постепенно они сливаются друг с другом.

Опыт 2. Измерение спектров космических мюонов.

Задача: регистрация и изучение спектра космических мюонов.

Оборудование: два пластиковых сцинтилляционных счётчика с ФЭУ (порог ФЭУ1 – 38мВ, ФЭУ2 – 50мВ); высоковольтный источник питания ФЭУ (рабочее напряжение ФЭУ 1170-1220 В); ЭМВ с установленным пакетом обработки данных ROOT; широкополосный (500 МГц) цифровой осциллограф (Tectronix TDS-3052 с высокой частотой оцифровки), опрашиваемый компьютером по интерфейсу GPIB; система «СУММА», предназначенная для одновременного компактного размещения множества блоков различного назначения.

Описание опыта.

Для регистрации космических мюонов используются два сцинтилляционных счётчика, в каждом из которых сцинтиллятор излучает фотоны при прохождении ионизирующих частиц, а полученный свет собирается на фотокатоде ФЭУ. Выходной сигнал с ФЭУ пропорционален энергии, поглощённой сцинтиллятором, а также зависит от свойств самого сцинтиллятора и ФЭУ. Однако большая часть сигналов, регистрируемых ФЭУ, являются не мюонами, а другими частицами либо шумами. Для отделения ненужного фона от мюонов необходимо использовать схему совпадения – обрабатывать сигнал только тогда, когда он приходит одновременно с обоих $\Phi \ni Y$ (Случайные шумы почти не возникают одновременно, а низкоэнергетические частицы в соответствии с формулой Бете-Блоха ионизируют очень сильно, поэтому пролетают только через один $\Phi \ni Y$. Сильновзаимодействующие высокоэнергетические частицы поглощаются атмосферой Земли и поэтому практически отсутствуют.). Сигналы с обоих ФЭУ подаются на осциллограф и обрабатываются для построения спектров на компьютере, при этом запуск развёртки осциллографа происходит по сигналу со схемы совпадения. Т.к. сбор света с разных участков сцинтиллятора различен и зависит от их удалённости от $\Phi \Im Y$, то целесообразно располагать ФЭУ перпендикулярно друг другу. Кроме того, для уменьшения влияния частиц, летящих под углом к вертикали (проходящих через один счётчик и не проходящих через другой) можно разносить ФЭУ по высоте. Также в опыте измеряется время между сигналами со схемы совпадения, которое, в соответствии с распределением Пуассона, должно быть распределено как убывающая экспонента.

Рис 6. Схема совпадений:

Рис. 7. Схема установки:

Описание установки.

Сигналы с каждого из ФЭУ разветвляются и подаются на входы осциллографа и на формирователь, в котором формируются цифровые сигналы заданной длительности (стандарт NIM цифровых сигналов). В логическом блоке реализуется схема совпадения, сигнал с которой запускает развёртку осциллографа и подаётся на счётчик для проверки. В опыте можно менять порог формирователя (от 50 до 400мВ) и длительность сигналов с формирователя (она поддерживается максимальной для уменьшения влияния задержек). Также можно менять взаимное расположение счётчиков: они могут быть расположены друг над другом вдоль или поперёк либо разнесены по высоте.

Результаты.

Измерен спектр сцинтилляционных вспышек от мюонов космических лучей. Полученные диаграммы спектров различаются в зависимости от расположения счётчиков и количества обработанных событий, но их общий вид удовлетворяют распределению Ландау.

Рис. 9. Поперечное расположение (ФЭУ2):

