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Abstract

In this research the solution of the charged Higgs boson four-momentum
reconstruction problem in the process qq′ → W± → hH± (with further
decays H± →W±h, W± → lνl and both h decaying into bb) in the THDM
Type I model using deep neural network approach is considered. Different
architectures of neural networks have been tested. Dense neural network
turned out to be the most convenient one since it can be used to suppress
tt-background in addition to four-momentum reconstruction.
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1 Introduction
The Standard Model of particle physics (SM) is the most successful theory that
is able to make extremely precise predictions on the properties of the particles
and the strength of their interactions. However, this theoretical model is not a
complete description of the nature of elemantary particles as far as it does not
explain Neutrino masses and their mixings, it has no candidate for Dark matter,
etc. The most common way to solve these problems is to come up with an extension
of the current theoretical model.
Such an extension can be looked for in the Higgs sector (very brief overview of the
Higgs mechanism is given in the section 2.1). One of the scenarios is the so-called
Two-Higgs-doublet model (also known as THDM). A particular specificataion of
this model (it is described in details in the section ) which provides us with an
opportunity to insvestigate new regions in the space of parameters of this model
is being considered in this research. Guided by the fact that a discovery of a new
particle that can not be predicted within the SM is the most persuasive evidence
of new physics, the process with intermediate h and H± is being studied. Since we
want to test the given model (to figure out if it is in agreement with the experi-
mental data or not), we should determine the final state as well as the intermediate
particles (see section 2.3) and then be able to derive the kinematic properties of
the intermediate particles using the information about the final state. To be more
specific, we worked on the algorithm that will reconstruct four-momentum of H±
for each event with the considered final state. We are mainly focused on Deep
Neural Network (DNN) approach for the solution of the reconstruction problem
(sections 3 and 4), but a brief discussion of another approach is also given in the
very beginning of the mentioned section. The obtained results are given in section
5.
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2 Physical constituent of the problem
2.1 Higgs mechanism and the «THDM»-extension
Higgs Mechanism is included into the SM to generate masses of the gauge bosons
(W± and Z). This is achieved by introducing terms with a complex doublet Φ of
scalar fields into the Electroweak Lagrangian LEW :

LEW = −1
4W

a
µνW

µν
a −

1
4BµνB

µν + (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(ΦΦ†)2, (1)

where W i
µ and Bµ are massless boson fields and Dµ is the covariant derivative,

defined as
Dµ = ∂µ − ig2

τa
2 W

a
µ − ig1

Yh
2 Bµ (2)

After spontaneous symmetry breaking (see fig. 1) we will end up with three massive
bosons – W+, W− (mixes W 1 and W 2) and Z (mix W 3 and B), – one massless
boson γ (mix of W 3 and B) and massive CP-even neutral particle – Higgs boson.

Figure 1: Higgs potential and symmetry breaking

However, nothing forbids the introduction of more Higgs-doublets. Actually, it
is one of the ways to go beyond the Standard Model. In our case the simplest
extension is considered – only one additional Higgs-doublet is introduced (now
these doublets are commonly designated as Φ1 and Φ2) and since that the model
is called the Two-Higgs-Doublet model (THDM). Having performed the symme-
try breaking of the extended Lagrangian, we will end up with five Higgs-sector
particles: two neutral CP-even Higgs bosons (h and H; H is heavier than h by
convention), CP odd pseudoscalar particle A and two charged Higgs bosons (H±).
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So, this model contains six free parameters: masses of H±, h, H and A (4 pa-
rameters), angle α – the mixing angle which diagonalizes the mass matrix of the
neutral CP even Higgs-particles, β – angle which is responsible for the ratio of the
vacuum expectation values v1 and v2, corresponding to the doublets Φ1 and Φ2:
tan β = v1/v2.
It should be also mentioned that the model has been chosen not only due to the
relative simplicity, but also due to a physical reason: it will be «natural» if one of
the doublets couples to up-type quarks and the other – to down-type quarks.

2.2 Model specification
Even such a simple extension called 2HDM contains have six free parameters (see
section 2.1). Some assumptions were made to clarify the model.
First of all, the extended Lagrangian is required to be symmetric under the trans-
formation Φ1 → −Φ1 to avoid Flavor-changing neutral currents. Then, sin(α− β)
is supposed to be equal to 0 (definitions of α and β are given in the section 2.1).
This assumption leads to the fact that the discovered Higgs boson is heavier than
the other CP even Higgs (since that H stands for the SM-Higgs boson and h – for
non-SM one). Moreover, h does not couple to SM gauge bosons and the couplings
to fermions are similar to those for the SM-Higgs H, so the b-decay and τ -leptons
are dominant. Another very important implication is that H± decays only via W±

and h (but not H). After that, the masses of A and H± are required to be equal
to each other. And, finally, the angle β is fixed by tan β = 3. At the end of the
day, the specified model has only two free parameters (m(H±) and m(h)) since
four independent requirements on six initial parameters were imposed.
The branching ratio of the decay H± → hW± is quite high in our case (THDM
Type I, fig. 2a) and, on the other hand, there is a large unexcluded region ofm(H±)
and BR(H± → hW±) parameters (see fig. 2b). Consequently, even though the
model has been simplified significantly, the resulting one still provides us with the
opportunity to obtain some useful results.

2.3 Considered process and topology
Having specified the model (see section 2.2), we should choose the process for
studying and searching for in the data. The Feynman diagram of the process
having been chosen is given on fig. 3.
This process has been chosen due to a number of reasons. As it was mentioned
in the section 2.2 h strongly couples to b-quarks and does not couple to gauge
bosons – this fact explains the consideration of the decay of h1 and h2 into bb.
Then, because H± decays to W±h (not W±H) some background events some
background events can be excluded from consideration. And, finally, the leptonic
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Figure 2: a) Branching ratio of the decay H+ → hW+ as a function of m(H+) and
m(h) for THDM Type I. b) Excluded regions in the space of m(H+) and
BR(H+ → hW+) variables.

decay of the final W± was chosen because otherwise the final state will contain six
jets instead of four of them and the analysis will become more tricky.

b

b
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Figure 3: Feynman of the process being studied

On fig. 4 a typical event kinematic of this process in x-y plane (z axis is oriented
along the beam momentum) in the so-called «non-boosted topology» (when final
state contains exactly four non-overlapping b-jets) is shown. Only two of four
jets origin from a charged Higgs, and one has to choose these jets correctly to
reconstruct the four-momenta of the intermediate particle H± (or, at least, the
mass of this particle). Two possible solutions of this combinatorical problem will
be discussed in the next section.
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Figure 4: Typical event kinematic of the process in the x-y plane

2.4 Background discussion
While dealing with rare events, all possible background events that can be occasi-
nally accepted as a signal should be taken into account. The most contributing
background process in our case is qq′ → tt with further decays t → W+b and
t → W−b, where one W decays hadronically and the other – leptonically. Prod-
ucts of this process are 4 jets, 1 charged lepton and «missed» neutrino, i.e., the
same final state as in the considered process, and, unfortunatelly, that makes this
process indistinguishable from that being studied. The Feynman diagram of this
process is given on fig. 5
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Figure 5: Feynman diagram of the most contributing background process.

7



3 Dense fully-connected neural network for m(H±)
reconstruction

3.1 Brief description of H± reconstruction approaches
There is a «physical» solution of the mass reconstruction problem. Since four jets
b1, b2, b3 and b4 are given, two h-candidates (h1 and h2) can be built and then pair
combination with minimal difference of their invariant masses should be chosen
(both of h1 and h2 are the non-SM neutral Higgs-particles). After that one out of
two H± candidates should be chosen with max(∆φ(H±i , hj)) and min(∆φ(H±i , hi))
(this choice is based on the two-body decay properties). Eventually, the mass of
H± can be calculated.
Another solution that can be tested is one which is based on the DNN (Deep
Neural Network) approach. As far as 4-momenta of all «particles» (here and
below no difference is made between «jet» as «particle») are carrying all kinematic
information about the event, these parameters are used as inputs of the network.
And, clearly, the network should be able to produce four outputs with each of
them corresponding to one of the four independent kinematic parameters of the
charged Higgs-particle.
In this research only the DNN-based solution was consdidered.

3.2 Dense architecture
A dense fully-connected neural network that transforms all the measured kinematic
variables of the final state into the kinematic variables of the «target-particle» H±
was implemented. The graphical representation of the architecture of this network
is given on fig. 6. Since data is slightly unbalanced (see more in section 3.3.1),
weighted mean squared error as a loss function was used. To minimize the loss
function Adam minimizer with initial learning rate 0.001 was chosen.
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j1 : pT , φ, η, m

j2 : pT , φ, η, m

j3 : pT , φ, η, m

j4 : pT , φ, η, m

l± : pT , φ, η, m

νl : pT , φ

pT (H±)

φ(H±)

η(H±)

m(H±)

Hidden
layers

Input
layer

Output
layer

Figure 6: Dense fully-connected neural network with four outputs – kinematic pa-
rameters of H±

3.2.1 Hyperparameters tuning

In case of the dense neural network number of layers, number of nodes in each
layer, activation function and batch size are the parameters that should be defined
to specify the network. To find the best set of these parameters random search
in the four dimensional space of the parameters was implemented and used. The
mentioned space is a Cartesian product of the following sets:

• number of layers (from 1 to 7 with step 1)

• number of nodes in each layer (from 50 to 250 with step 50)

• activation function (relu, elu, selu, softplus)

• batch size (from 25 to 250 with step 25)

The network with five layers each consisting of 200 nodes with softplus activation
function and 100 samples in the batch turned out to have the best quality.
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3.3 Data for training
3.3.1 Description of data used

To implement a solution based on DNN a training dataset is needed. As it was
mentioned in the section 2.2, having specified the model we are still dealing with
two free parameters which are masses of h and H±. One of the parameters was
fixed (by setting m(h) = 100 GeV ) and events for different masses of H± with
two leptonic final states (corresponding to W → eνe – e-events – and W → µνµ –
µ-events) were generated with MadGraph (quark-level generation), hadronization
was simulated with PYTHIA. After that all the events were passed through the
Geant4 model of the CMS detector and, finally, they were reconstructed and since
that used as a dataset for DNN. The distribution of the number of generated events
is given in the table 1.

m(H±), GeV 200 250 300 350 400 450 500 550 600
e-events 14274 16428 19778 22645 13553 12522 12717 7479 6678
µ-events 22332 18516 28679 28598 22303 18201 14342 10828 7850

Table 1: Distribution of the number of generated events with m(h) = 100 GeV

Each event is represented by a vector of 4 × 5 + 2 = 22 features (4 kinematic
parameters for each of the jets and charged lepton and 2 parameters for the missing
lepton). Kinematic of each particle (except for neutrino) is described in terms of
(pT , φ, η,m), where pT – transverse momentum, φ – angle between the ~pT and
x-axis, η – pseudorapidity (η = − ln

(
tan

(
θ
2

))
, where θ is the angle between the

momentum of the particle and z-axis) and m – mass of the particle.
All the events were divided on training, test and validation in the following ratio:
81 : 10 : 9.

3.3.2 Normalization of the inputs

As far as inputs with different scales (for instance, φ ∈ [−π, π] but m is not
bounded) are being used, the inputs should be normalized. This point is crucial
for Machine Learning algorithms but should not have a significant influence on the
DNN-output. However, normalization of the inputs has no visible effect on the
predictions, but leads to more stable training of the NN (see training curves on
fig. 7). Here the scaler which centers each input to its’ mean value and component
wise scales to unit variance was used.
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Figure 7: Comparison of training curves for the networks with same architectures
but not normalized (left column) and normalized (right column) inputs.

3.3.3 Normalization of the outputs

Normalization of the outputs is also important – errors related to bounded param-
eters (like φ) have relatively small contribution to the loss function than the others
(m or pT ). On fig. 8 predictions of the networks with same architectures but not
normalized and normalized outputs are shown. Predicted distributions become
being in agreement with data since all the outputs have comparable contributions.
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Figure 8: Comparison of the φ(H±) predictions of the networks with same archi-
tectures but not normalized (left column) and normalized (right column)
outputs. Here and everywhere below blue histogram represents the real
distribution of the events by mass; orange and green histograms repre-
sent the predicted distribution of the corresponding network for signal
and background events respectively.
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3.4 Number of input jets
On fig. 9 the distribution of the generated signal events by number of jets is given.
The majority of the events (∼ 80 %) contains exactly 4 jets, ∼ 18 % – 5 jets
and the rest of the events has 6 or more jets. It should be mentioned that this
distribution depends neither on the mass of H± nor on the type of lepton in the
final state (e or µ).
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Figure 9: Distribution by number of jets of the generated signal events with
m(H±) = 200 GeV

Due to this distribution it is quite clear that the improvement of the network’s
output cannot change dramatically if the information about the kinematic param-
eters of all the final jets (not only four of them with the maximal pT ) is included.
However, this was tested and the results are given on fig. 10.
Due to barely noticeable change of the quality of the network 22 inputs (4 jets
with highest pT -s) are prefered.
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Figure 10: Comparison of the m(H±) predictions of the networks with 4-jets (left
column) and 6-jets (right column) inputs.
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3.5 Convenient set of outputs
The network is aimed to reconstruct as much information about the intermediate
H± as possible. To have a complete description of the kinematic properties of H±
its’ 4-momentum should be reconstructed. Possible candidates for the outputs are
either (E, px, py, pz) or (pT , φ, η,m). The transformation from one set of variables
to the other is simple, but both of them were tested as outputs to check if it affects
the mass-reconstruction quality. It turned out to be preferable to have m in the
outputs rather than derive it from predicted 4-momentum as m =

√
E2 − ~p2 (see

fig. 11) as the second method leads to wider distributions.
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Figure 11: Comparison of the m(H±) predictions of the networks with same archi-
tectures but (pT , φ, η,m) (left column) and (E, px, py, pz) (right column)
outputs.
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There is also another sufficient argument against neural network with (E, px, py, pz)
outputs (see section 3.6).

3.6 Background suppression
As it was mentioned in the section 2.4, the process being studied has a significant
background tt. To deal with this problem it was proposed to include background
events into training and train the network such that it will predict for them vector
(pT , φ, η,m) = (0, 0, 0, 0). This network was trained, the outputs are given on fig.
12. Predicted distributions are similar to generated ones and, moreover, peak of
the bakground is shifted to m = 0 GeV which provides us with an additional
opprotunity to distinguish between signal and background events.
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Figure 12: Predictions of the network with (pT , φ, η,m) outputs (background is set
to (pT , φ, η,m) = (0, 0, 0, 0)).

Training on the same data with (E, px, py, pz) outputs was implemented. The
obtained distributions (fig. 13) are shifted (in comparison to generated) and this
is another argument against using of that set of outputs in the network.
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Figure 13: Predictions of the network with (E, px, py, pz) outputs (background is
set to (E, px, py, pz) = (0, 0, 0, 0)).

3.7 Interpolation problem
Since the neural network was trained only on the events where masses of the
H± were fixed in the range from 200 GeV to 600 GeV with 50 GeV step (see
section 3.3.1), the prediction accuracy for intermediate masses should be estimated.
To solve that problem, the network was retrained with data where m(H±) was
fixed in the range from 200 GeV to 600 GeV with 100 GeV step and then the
obtained model was tested on events with m(H±) = 250 GeV , m(H±) = 350
GeV , m(H±) = 450 GeV and m(H±) = 550 GeV . Predictions are given on fig.
14. The conclusion is that generated mass can be reconstructed only if m(H±) is
relatively small. Therefore, to reconstruct precisely kinematical parameters of H±
with m(H±) > 400 GeV new generated events are needed.
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Figure 14: Predictions of the network trained on data with m(H±) = 200, 300,
400, 500 and 600 GeV

4 Other architectures overview
Despite the fact that dense fully-connected neural network is able to give accurate
predictions (see section 5), other architectures were tested.
Specifically, based on some positive results (see ”ML applications to jet tagging
in CMS”, Mauro Verzetti) convolutional input layers before Dense Layers were
added (see fig. 15). To implement this kind of neural network each input vector
was reshaped into a table 6 × 4 (particle × momentum) where all particles were
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ordered by pt ((η,m) of neutrino were setted to (0, 0)). This approach turned out
to be less accurate than the approach with Dense Layers.

Figure 15: Graphical representation of the convolutional layer

As far as each event can be interpreted as a sequence of 4-momenta of the particles
in the final state, recurrent neural network (RNN) as an input layer can be used.
One of the most popular kinds of RNN called LSTM (long short term memory)
was tested. Predictions of a modification of such a network are given on fig. 16
and they are in the agreement with generated distributions.

0 200 400 600 800 1000
m(H ± ), GeV

10 6

10 5

10 4

10 3

10 2

Nu
m

be
r o

f e
ve

nt
s

Mass reconstruction of H ±  (mgen(H) = 200 GeV)

True
Prediction (signal)
Prediction (background)

0 200 400 600 800 1000
m(H ± ), GeV

10 6

10 5

10 4

10 3

10 2

Nu
m

be
r o

f e
ve

nt
s

Mass reconstruction of H ±  (mgen(H) = 400 GeV)

True
Prediction (signal)
Prediction (background)

0 200 400 600 800 1000
m(H ± ), GeV

10 6

10 5

10 4

10 3

10 2

Nu
m

be
r o

f e
ve

nt
s

Mass reconstruction of H ±  (mgen(H) = 600 GeV)

True
Prediction (signal)
Prediction (background)

Figure 16: Predictions of m(H±) obtained with the network with 1 LSTM input
layer (128 cells) and 4 successive fully-connected layers.

Despite comparable quality of dense fully-connected network and one with LSTM-
input layer, the first network is prefered for its’ simplicity and less number of
parameters. However, more detailed studies of other architectures are required.
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5 Results
During this research application of the DNN approach for the charged Higgs boson
four-momentum reconstruction problem in the given process has been considered.
The method turned out to be successful. Dense neural network with five layers
each consisting of 200 nodes with softplus activation function and 100 events in
the batch has been trained on data without background events (fig. 17) and with
them (fig. 18). The second network succeeds in distinguishing between signal and
background events. Neural networks with LSTM and convolutional layers have
been tested; however, none of them showed significantly better results.
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Figure 17: Predictions of the resulting dense fully-connected neural network (back-
ground events are not included into training)
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Figure 18: Predictions of the resulting dense fully-connected neural network (back-
ground events are included into training)
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