ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (Государственный Университет)»

Физтех-школа Фундаментальной и Прикладной Физики Кафедра Физики Высоких Энергий

Направление подготовки: 03.03.01 Прикладные математика и физика Направленность (профиль) подготовки: Физика микромира Форма обучения: очная

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА Изучение образования анти-дельта бариона в антипротон-нуклонных взаимодействиях при 30 ГэВ (бакалаврская работа)

Студент: Талицкий Александр Михайлович

Научный руководитель: к.ф.-м.н., доц. начальник лаборатории адронной спектроскопии, отдел экспериментальной физики ИФВЭ Юрий Анатольевич Хохлов

Протвино 2018

Оглавление

1.	Введение	3
2.	Установка ВЕС	4
3.	Кинематика реакции	6
4.	Обработка Реальных Данных	8
5.	Моделирование	12
6.	Оценка сечения	17
7.	Заключение	21
C		00
Список	литературы	22

1. Введение

Часто в Адронной спектроскопии мы имеем дело с реакциями, происходящими на нуклонах и ядрах. В таких реакциях регистрируются быстрые вторичные частицы, и вся кинематика восстанавливается, используя эти данные и модельные предположения о характере взаимодействия. В данной работе описывается изучение особенностей установки на примере нахождения сечения реакции $\bar{p}N \to \bar{\Delta} \to \bar{p}\pi N'$. А в частности предполагая обмен виртуальным π мезоном при рождении $\bar{\Delta}$ и дальнейший распад на $\bar{p}\pi$.

2. Установка ВЕС

Рис. 1. Схема установки ВЕС

Изучаемые данные были получены на установке ВЕС ИФВЭ. Вершинный спектрометр (ВЕС) является широкоапертурным магнитным спектрометром, с помощью которого регистрируются заряженные треки и γ-кванты. До мишени пучок проходит используются сцинтилляционные счетчики (S1 - S3) и черенковские счетчики (С1 - С3). Черенковские счетчики находятся между парой двухполосных пропорциональных камер(HPC). Счетчики A10 и A11 для подавления гало пучка, представляющие из себя сцинтилляционные пластины с вырезанным отверстием. После идет мишень(TARG) окруженная охранной системой(VETO). Мишень представляет из себя цилиндр. Диаметр цилиндра – 4.5 см, толщина 4 см.

После мишени идут пропорциональные камеры PC. Группа камер PC1 и группа PC2, состоящая из 5 двухполостных детекторов. Дальше располагается пороговый черенковский счётчик, состоящий из радиатора (фреон-22 при атмосферном давлении), 28 сферических зеркал 2-х размеров: 14×25см в центре и 28×55см на периферии, и 28 ФЭУ. Дальше стоят трехполосные дрейфовые камеры. После данного счётчика следует группа больших дрейфовых камер на основе трубок DC. Последняя камера располагается между двумя сцинтилляторами BK (*Beam killers*). В конце имеется электромагнитный калориметр ECAL.

Введена лабораторная система координат: начало СК является центр магнита, ось z направлена вдоль главной оси магнита и практически совпадает с направлением пучка, ось у направлена вертикально, а ось х добавлена до правой тройки векторов.

Основной рабочий триггер "MAIN"вырабатывается при наличии сигнала T31 и отсутствии сигнала с охранной системы, т.е.

$$MAIN = S_1 \times S_2 \times S_3 \times \bar{A}_1 \times \bar{A}_2 \times \bar{K}_1 \times \bar{K}_2 \times \overline{GUARD}$$

Верхнее подчеркивание в данном случае обозначает логическое отрицание. В этой работе были обработаны события из 44 и 45 сеанса.

3. Кинематика реакции

3.1. Система Готтфрида Джексона

Для изучения особенностей реакции необходимо рассматривать систему Готтфрида Джексона. В данном случае $\bar{p}N \to \Delta N' \to \pi \bar{p}N'$ можно определить систему Готтфрида Джексона $\vec{p}_2 + \vec{p}_3 = \vec{p}_a + \vec{p}_b - \vec{p}_1 = 0$. В этой системе отсчета вектора $\vec{p}_a, \vec{p}_b, \vec{p}_1$ определяют плоскость рождения, которая обозначается xz. А $\vec{p}_3 = -\vec{p}_2$ задает угол Готтфрида-Джексона(Θ_{GJ}) и угол Треймана-Янга (ϕ_{TY}). [1]

Угол между \vec{p}_b и \vec{p}_3 называется углом Готтфрида-Джексона и определяется выражением:

$$\cos\Theta_{GJ} = \frac{\vec{p}_b \cdot \vec{p}_3}{|\vec{p}_b||\vec{p}_3|}$$

Азимутальный угол \vec{p}_3 в джексоновской системе называется углом Треймана-Янга и определяется формулами:

$$\cos \phi_{TY} = -\frac{(\vec{p}_b \times \vec{p}_1) \cdot (\vec{p}_b \times \vec{p}_3)}{|\vec{p}_b \times \vec{p}_1| |\vec{p}_b \times \vec{p}_3|}$$
$$\sin \phi_{TY} = \frac{|\vec{p}_b| (-\vec{p}_b \cdot [\vec{p}_1 \times \vec{p}_3])}{|\vec{p}_b \times \vec{p}_1| |\vec{p}_b \times \vec{p}_3|}$$

3.2. Спиновой формализм

$$\pi^+ p \to \Delta^{++} \to \pi^+ p$$

Определим рассеяние в системе ЦМ Δ . Обозначим ось z по направлению налетающей частицы, аналогично системе Готтфрида-Джексона. Как известно Δ имеет спин $\frac{3}{2}$. Волновая функция пиона $\phi(l,m) = \phi(1,1)$ или $\phi(l,m) = \phi(1,0)$. А для протона результирующее состояние $\alpha(\frac{1}{2},-\frac{1}{2})$. В итоге получаем результирующее состояние

$$\psi(j,m) = \psi(\frac{3}{2},\frac{1}{2})$$

После испускания пиона получаем:

$$\psi(\frac{3}{2},\frac{1}{2}) = \sqrt{\frac{1}{3}}\phi(1,1)\alpha(\frac{1}{2},-\frac{1}{2}) + \sqrt{\frac{2}{3}}\phi(1,0)\alpha(\frac{1}{2},\frac{1}{2});$$

Зная воловые функции пиона ϕ можем вычислить угловое распределение:

$$\phi(1,1) = Y_1^1 = -\sqrt{\frac{3}{4\pi}} \sin \theta \frac{e^{i\phi}}{\sqrt{2}}$$
$$\phi(1,0) = Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta$$

В итоге получаем угловое распределение пиона:

$$I(\theta) = \psi\psi * = \frac{1}{3}|Y_1^1|^2 + \frac{2}{3}|Y_1^0|^2$$

Таким образом:

$$I(\theta) \sim 1 + 3\cos^2\theta$$

4. Обработка Реальных Данных

Здесь и в дальнейшем мы будем рассматривать реакцию. $\bar{p}\pi\to\bar{\Delta}^{--}\to\bar{p}\pi$

4.1. Отборы

Для выделения нашей реакции были применены следующие отборы:

- 1. События реконструированы без ошибок
- 2. Пучок идентифицирован как \bar{p}
- 3. На выходе находятся два отрицательно заряженных треков
- 4. Вершина лежит в мишени, расширенной на 1 см

Рис. 2. Вершина XY и Z

- 5. Суммарный импульс вылетевших треков лежит в диапазоне от 26 GeV до 32 Gev.
- 6. Треки не попадают ни в K1, ни в K2

После отборов выделяем реакцию:

Рис. 3.
а) Суммарный импульс \bar{p} и π b) Распределение п
о M_{Δ} с) Распределение по t

9

4.2. Определение углов в системе Готтфрида Джексона

Для определения однозначности систему Готтфрида-Джексона будем считать, что p_2 из 3.1 будет \bar{p} . Перейдя в систему Готтфрида-Джексона и учитывая формулы для $\cos \Theta_{GJ}$ и $\sin \phi_{TY}$. Построим распределения по углу Готтфрида-Джексона и Треймана-Янга.

Рис. 4. а) Распределение по ϕ_{TY} b) Распределение по $cos(\Theta_{GJ})$ c) Двумерное распределение по ϕ_{TY} и $cos(\Theta_{GJ})$

Можно наблюдать "яму"в гистограмме ϕ_{TY} . Разберемся получше, в каком месте она возникает, для этого построим 3D гистограмму, где по осям x и y будут отложены углы Θ_{GJ} и ϕ_{TY} соответственно. На рис. 4

с) не вооруженным глазом видно, что яма из рис 4 а) локализовалась в области с $\phi_{TY} \sim 0$, а соз $\Theta_{GJ} \in [-1,0]$. Попробуем исследовать эту область, сгенерировав достаточно большое количество данных и пропустив их через смоделированную установку.

5. Моделирование

Для нахождения аксептанса необходимо смоделировать систему и, пропустив через виртуальную установку, мы сможем узнать потерянные данные для учета аксептанса.

5.1. Исходные данные моделирования

Рис. 5. Сгенерированные распределения: a) по M_{Δ} b) по t c) по $\cos \Theta_{GJ}$ d) по ϕ_{TY}

Рассчитываем, что моделирование 10 000 000 событий будет достаточно точным для нашего случая. Масса была сгенерирована по Брейт-Вигнеровскому распределению, по переменным $\cos \Theta_{GJ}$ и ϕ_{TY} распределение равномерное, а распределение t было взято из эксперимента.

5.2. Результаты обработки

После обработки результатов получаем аксептансы как функцию M, t, a также двумерный аксептанс от ϕ_{TY} и сов Θ_{GJ} . Аналогично 4.2 построим ϕ_{TY} и сов Θ_{GJ} в системе Готтфрида-Джексона. Можно заметить, что распределение по ϕ_{TY} почти повторяет распределение в RD, откуда можно сразу предположить, что исходное распределение равномерное, как и предсказывает теория [2]

Рис. 6. Распределения: а) по ϕ_{TY} b) по $cos(\Theta_{GJ})$

Рис. 7. а) Аксептнансы как функция: а)M b)t c) ϕ_{TY} и $cos(\Theta_{GJ})$

Интересно заметить ту же область (см рис. 7) с $\phi_{TY} \sim 0$, а $\cos \Theta_{GJ} \in [-1,0]$. Но все еще не ясно откуда получается этот провал в аксептансе. Также хотелось отметить искажение в аксептансе М. Для дальнейшего изучения построим нахождение треков в плоскости *beam* killer В результате получаем следующую область трека.

14

Рис. 8. а) б)

Видимо провал возникает из-за попадания треков в beam killer. Мы можем наблюдать "дырку"в положении треков \bar{p} и π . Грубо говоря это и есть потерянные треки.

Из аксептанса по М видно, что параметры ВW искажаются, проверим так ли это.

Рис. 9. M_{Δ} после прохождения МС

Да, действительно параметры исказились и добавился некий фон.

Результаты можно посмотреть в таблице.

	M, GeV	Γ, GeV	Фон
Реальные данные	1.223	0.144	218M - 292
Сгенерированные данные	1.232	0.12	-
После прохождение МС	1.235	0.122	3853M - 4720

Видно, что искажение не сильное, и можно этим пренебречь в дальнейшей работе.

6. Оценка сечения

6.1. Поправка на аксептанс

Зная аксептанс, можно поправить данные. В первую очередь, просто поделить реальные данные на аксептанс.

Рис. 10. Поправленное распределение a) по ϕ_{TY} b) по $cos(\Theta_{GJ})$ c) по ϕ_{TY} и $cos(\Theta_{GJ})$

Видно, что ожидаемое распределение из теоретической части 3.2 не получается. Объяснить пик в $cos(\Theta_{GJ}) = 1$ очень трудно, для этого надо разобраться с сложными особенностями детекторов и аппаратуры. Теперь поправим М.

Рис. 11. M_{Δ} , поправленная на аксептанс

Видно, что параметры фита изменились. Опираясь на Рис. 11 теперь можно оценить сечение

6.2. Вычисление сечения

Введем некую величину $R = \frac{N_x}{N_b}$, где N_x есть количество зарегистрированных Δ , а N_b - количество треков пучка попавших в мишень. Эта величина R и есть сечение с точностью до размерных факторов ρ плотности вещества и ϵ эффективности регистрации. Вообще сечение можно оценить по формуле:

$$K_{BEAM} \cdot \sigma \cdot \epsilon = \frac{N_x}{N_{beam} \cdot L_{BEAM}} \tag{1}$$

$$N_{beam} = \frac{N_b \cdot Dt \cdot e_{beam}}{K_{BEAM}} \tag{2}$$

$$L_{BEAM} = \rho_{Be} \cdot L \cdot N_a \cdot 5/9 \tag{3}$$

 N_a - число Авогадро, равное $6 \cdot 10^{23} \ mol^{-1}$.

5/9 - число нейтронов в ядре, с кем реагирует антипротоны в нашей реакции.

Dt фактор мертвого времени, считаем его ~ 0.5 .

 K_{beam} коэффициент разрежения триггера $K_{beam} = 1000.$

Необходимо понять, как высчитывать L_{BEAM} , ведь у каждого трека своя длина прохождения через мишень. Поэтому здесь надо учитывать не просто произведение N и L_{BEAM} , а сумму по всем трекам L.

$$\sigma \cdot \epsilon \cdot K_{BEAM} = \frac{N_x}{\sum \cdot L_i} \tag{4}$$

В дальнейшем можно заменить $\sum L$ просто на среднюю L. Таким образом, мы возвращаемся к формулам 1 и 3. Только теперь вместо L будем понимать среднюю длину прохождения через мишень. Для вычисления которой построим распределение по L

L вычисляется для всех треков попавших в мишень при сработавшем триггере beam. А N_{Δ} вычисляется интегралом BW¹ из рис. 11

$$N_{\Delta} = \int \frac{C}{(x^2 - M_{\Delta}^2)^2 + \Gamma^2 M_{\Delta}^2} dx \tag{5}$$

Погрешность BW берется из фитирования гистограммы, что в свою очередь создает погрешность N_{Δ} . Относительную погрешность ε для величины N_{Δ} можно оценить следующим образом:

$$\varepsilon = \sqrt{\varepsilon_C^2 + \varepsilon_M^2 + \varepsilon_\Gamma^2} \approx \varepsilon_C$$

Можно пренебречь ε_M и ε_{Γ} , так как они достаточно малы по сравнению с ε_C . Приведем все данные в таблице, где N_{beam} количество треков, зарегистрированных пучковым триггером и пересекающих мишень, а ΔX абсолютная погрешность:

	Параметры BW						Сечение
	C, GeV	M_{Δ}, GeV	Γ, GeV	N_{Δ}	N _{beam}	L, cm	$\sigma, \mu b$
Значение	19.17	1.22	0.137	23416	140544	4.962	55
ε	0.16	0.01	0.06	0.16	0.002		0.16
ΔX	3.13	0.01	0.008	3823	540		9

Таблица 1

Считая эффективность регистрации $\epsilon \sim 1$, вычисляем сечение: $\sigma = 55 \ \mu b$. Теперь оценим погрешность нашего измерения. Аналогично погрешности N_{Δ} мы можем вычислить погрешность σ .

$$\varepsilon_{\sigma} = \frac{\delta\sigma}{\sigma} = \sqrt{\varepsilon_{N_{\Delta}}^2 + \varepsilon_{N_{beam}}^2 + \varepsilon_L^2} \approx 0.16$$

И получаем итоговый ответ: $\sigma = 55 \pm 9 \ \mu b$.

 $^{^1}$ Брейт-Вигнерское распределение

7. Заключение

В данной работе было найдено сечение образования Δ бариона на примере реакции $\bar{p}N \rightarrow \Delta N'$. Хотя в этой работе и остались неясные моменты, основная часть работы сделана. Освоены основные принципы в экспериментальной физике высоких энергий, проведена оценка сечения образования Δ . Но присутствует необъяснимость в системе Готтфрида-Джексона. Также в разделе 6.2 хотелось бы улучшить точность нахождения сечения. Все это требует дальнейшей работы и усилий.

Список литературы

- 1. Бюклинг Е., Каянти К. Кинематика элементарных частиц 1975, 340с.
- Suh-Urk Chung Physics Department, Brookhaven National Laboratory Spin Formalism — 2014 87 c.
- 3. M. Tanabashi et al. Particle Data Group, Phys. Rev. D 98, 030001 2018.
- 4. C. Zemach, Phys. Rev. 133, B1201 (1964).
- 5. Перкинс Д. «Введение в физику высоких энергий» 1991, 429 с
- 6. А.Ивашин. «Предложение по формату DST для эксперимента BEC», ИФВЭ http://pcbech.ihep.su/ ivashin/dst-1.9.pdf