Поиск дальнодействующих радиально-несимметричных корреляций между струями и заряженными частицами

Мандрик П.С.

10 июля 2015 г.

Содержание

- # Эксперимент ATLAS
- # Отбор событий
 - Триггер
 - Сопутствующие вершины
 - Треки, Струи
- # Распределение в системе координат $\Delta\eta$, $\Delta\phi$
 - Исключение структуры UE + Pile-Up
 - Поправка востановленных структур UE+Pile-Up
 - Исключение структуры ASR
 - Исключение центрального пика
- # Распределение в системе координат η_{TJ} , ϕ_{TJ}

CMS "Near Side Ridge effect"

Двухчастичное распределение: $F_1(N)F_2(\phi,\eta,\Delta\phi,\Delta\eta)rac{d^2N}{d\Delta\phi d\Delta\eta}$

Эксперимент ATLAS

- Внутренний трековый детектор: измерение импульсов заряженных частиц, координат первичных и вторичных вершин, $|\eta|<2.5,$ $p_T>0.5$ ГэВ
- Система калориметров: измерение электронов/фотонов, струй
- Мюонный спектрометр: идентификация и измерение импульсов мюонов, $|\eta| < 2.7$ _{Моонные детекторы} Электромагнитные калориметры

Триггер в эксперименте ATLAS

- 2808 сгустков протонов единовременно находятся в ускорителе
- ~100,000 миллионов протонов в сгустке
- пересечение каждые 25 нс
- пиковая частота событий 40 МГц, средняя 31.6 МГц

События проходят через трёхуровневую систему триггеров:

Масштабирующий фактор (prescale):

Таким образом, прошедшие триггер события:

- являются событиями специфическими, выделяющимися среди всех прочих произошедших
- искажаются масштабирующим факторами

Фит функцией: $f(x) = \frac{1 + \frac{p_4}{p_3 - x}}{1 + e^{p_1 * (p_2 - x)}}$ Потеря 18% струй для триггера

EF_j180_a4tchad из-за смещения точки выхода на эффективность 99%

Сопутствующие вершины

Вершины, сопутствующие триггируемой вершине и отвечающие взаимодействиям протонов из сгустков.

- треки, струи возможно привязать к вершинам
- объекты, относящиеся к триггируемой вершине, из дальнейшего анализа исключаются

Отбор треков / струй

Треки:

- $p_t > 0.5$ ГэВ
- $|\eta| < 2.5$ трек проходит через внутренний детектор.
- число хитов в SCT системе внутреннего детектора ≥ 6 и число хитов в пиксельном детекторе в центральной части (B-Layer) с учётом мёртвых областей ≥ 1
- для треков с $p_t > 10$ ГэВ проверка на probability > 1%

Калориметрические струи:

- востанавливаются по выделеной в кластерах калориметра энергии
- минимальный порог по $E_T>15~{\sf \Gamma}$ эВ
- являются триггируемым объектом

Трековые струи:

- востанавливаются из треков
- привязываются к вершинам при построении
- порог по энергии может быть снижен
- востанавливаются из треков
- алгоритм anti-kt, R = 0.4
- $p_t > 4000 \text{ M} \Rightarrow \text{B}$
- число треков $N_{trk} \geq 2$

Для анализа корреляций между струями и заряженными частицами используются два набора переменных. Первый набор определён в системе координат детектора ATLAS:

•
$$\Delta \phi = \phi_{track} - \phi_{jet}, \ \Delta \eta = \begin{cases} \eta_{track} - \eta_{jet}, & \text{при } \eta_{jet} > 0\\ \eta_{jet} - \eta_{track}, & \text{при } \eta_{jet} < 0 \end{cases}$$

Второй набор переменных:

• ϕ_{TJ} , η_{TJ} - псевдобыстроты и азимутального угла треков в системе координат, связанной со струёй

 ϕ_{TJ} отсчитывается от проекции вектора (0,0,1) для струй с $\eta > 0$ и (0,0,-1) для струй с $\eta < 0$ в плоскости, ортогональной оси струи.

Корреляционная функция - нормированное распределение плотности заряженных частиц в пространстве выбранных переменных:

$$\frac{1}{N_{event}} \frac{d^2 N}{d\Delta \eta d\Delta \phi} \qquad \qquad \frac{1}{N_{event}} \frac{d^2 N}{d\phi_{TJ} d\eta_{TJ}}$$

- может быть определена отдельно по интервалам:

• *E_T* : 4, 10, 20, 30, 60, 90, 120 ГэВ

Следующие далее распределения используют интервал:

$$|\eta| < 0.5$$
, 4 ГэВ $< E_T < 10$ ГэВ

Распределение в системе координат $\Delta\eta, \Delta\phi$

- Центральный пик в окрестности $\Delta \eta = 0$, $\Delta \phi = 0$.
- Структура ASR (Away Side Ridge) при $\Delta \phi = \pi$.
- Фоновая структура UE (Underlying event)
- Вклад от сопутствующих вершин (Pile-Up)

Вклад структуры Pile-Up

- используется мнимая вершина, с координатой триггируемой вершины из предшествующего события
- треки из триггируемой вершины исключаются (требуется перенормировка), остальные ассоциируются с мнимой вершиной
- вклад треков из сопутствующих вершин можно разбить по ячейкам гистограммы в связанной со струёй системе координат $(\Delta\eta, \Delta\phi)$.

Исключение структуры UE + Pile-Up

- UE и Pile-Up радиально-симметричны относительно оси z
- экстраполяция UE из области, наименее искажённой другими структурами $(0 \pm \pi/3$ и $-\pi \pm \pi/3)$
- экстраполяция путём поворота треков

Поправка востановленных структур UE+Pile-Up

Перенормировка на области $R>2.0, \ -1.2 < \Delta \phi < 1.2,$ наименее искажённой другими структурами:

$$S = 1 + \frac{Int_b}{Int_a} = 0.958\tag{1}$$

Исключение структуры ASR

Исключение ASR путём обрезания $|\Delta \phi| < 1.3$:

Исключение центрального пика

Для исключения доминирующей радиально-симметричной части центрального пика используется метод вращение событий.

↓ поворот

↓ поворот

🕆 вычитание

очищенное от структур UE+Pile-UP (3)

исходное распределение,

(4)

(3) - (4)

Поиск дальнодействующих радиально-несимметричных корреляций между струями и заряженными частицами

Востановление радиально-симметричной части центрального пика по его части:

Распределение в системе координат $\Delta \eta, \Delta \phi$

- выделена радиально-несимметричная структура в области центрального пика
- колличественная характеристика:

$$Int_l = 0.0141$$
, $Int_r = 0.0268$

Распределение в системе координат η_{TJ} , ϕ_{TJ}

Исходное распределение:

После исключения UE+Pile-Up:

В новом наборе переменных:

- UE (+Pile-Up) стянут до двух раздвоенных доминирующих пиков
- ASR сконцентрирован в области двух пиков, меньших на порядок в сравнении с UE
- Центральный пик развёрнут по переменной ϕ_{TJ}

После исключения UE+Pile-Up+ASR:

Востановление радиально-симметричной части центрального пика по его части и вращение событий:

Распределение в системе координат η_{TJ} , ϕ_{TJ}

- выделена радиально-несимметричная структура в области центрального пика
- колличественная характеристика:

$$Int_t = 0.0513$$
, $Int_b = 0.0310$

26 / 30

Итоговое распределение плотности заряженных частиц для струй с $|\eta| < 0.5$ и различных интервалов:

 $4 < E_T < 10$ ГэВ $20 < E_T < 30$ ГэВ $30 < E_T < 60$ ГэВ

Заключение

- проведён поиск радиально-несимметричных дальнодействующих корреляций между струями и заряженными частицами
- для трековых струй с $|\eta| < 0.5$ и в различных интервалах E_T (до 120 ГэВ) обнаружен избыток заряженных частиц в виде двух широких пиков в плоскости реакции при $\phi_{TJ} = 0$ и $\phi_{TJ} = -\pi$ при небольших положительных значениях η_{TJ} (1.4)
- величина интеграла от плотности заряженных частиц в выделенных областях варьируется в пределах 0.1 – 0.3 частицы на событие/струю
- для трековых струй с $E_T > 30$ ГэВ в области сравнительно больших η_{TJ} 3-4 в плоскости реакции $\phi_{TJ} = 0$ $(-\pi)$ наблюдается некоторый статистически значимый недостаток заряженных частиц
- все результаты являются предварительными и ещё не проходили процедуру утверждения внутри сотрудничества АТЛАС

Генератор случайных чисел

HepJamesRandom (CLHEP) RANMAR (Marsaglia-Zaman) $\approx 10^{43}$

Распределение трековых струй / треков по трековым струям

